Дифракционная решетка. Почему при дифракции белого света происходит его разложение в спектр Дифракционный свет

Дифракцией света в физике называют явление отклонения от законов геометрической оптики при распространении световых волн.

Термин «дифракция » происходит от латинского diffractus , что дословно означает «огибание препятствия волнами». Изначально явление дифракции именно так и рассматривалось. На самом деле это гораздо более широкое понятие. Хотя наличие препятствия на пути волны всегда является причиной дифракции, в одних случаях волны могут огибать его и проникать в область геометрической тени, в других они только отклоняются в определённом направлении. Разложение волн по частотному спектру также является проявлением дифракции.

Как проявляется дифракция света

В прозрачной однородной среде свет распространяется прямолинейно. Поставим на пути пучка света непрозрачный экран с небольшим отверстием в виде круга. На экране наблюдения, расположенном за ним на достаточно большом расстоянии, мы увидим дифракционную картинку : чередующиеся светлые и тёмные кольца. Если же отверстие в экране имеет форму щели, дифракционная картинка будет другой: вместо окружностей мы увидим параллельные чередующиеся светлые и тёмные полоски. Что же является причиной их появления?

Принцип Гюйгенса-Френеля

Объяснить явление дифракции пытались ещё во времена Ньютона. Но сделать это на основе существовавшей в то время корпускулярной теории света не удавалось.

Христиан Гюйгенс

В 1678 г. нидерландский ученый Христиан Гюйгенс вывел принцип, названный его именем, согласно которому каждая точка фронта волны (поверхности, достигнутой волной) является источником новой вторичной волны . А огибающая поверхностей вторичных волн показывает новое положение волнового фронта. Этот принцип позволял определять направление движения световой волны, строить волновые поверхности в разных случаях. Но дать объяснение явлению дифракции он не мог.

Огюстен Жан Френель

Много лет спустя, в 1815 г. французский физик Огюсте́н Жан Френе́ль развил принцип Гюйгенса, введя понятия когерентности и интерференции волн. Дополнив ими принцип Гюйгенса, он объяснил причину дифракции интерференцией вторичных световых волн.

Что же такое интерференция?

Интерференцией называют явление наложения когерентных (имеющих одинаковую частоту колебаний) волн друг на друга. В результате этого процесса волны либо усиливают друг друга, либо ослабляют. Интерференцию света в оптике мы наблюдаем, как чередующиеся светлые и тёмные полосы. Яркий пример интерференции световых волн - кольца Ньютона .

Источники вторичных волн являются частью одного и того же волнового фронта. Следовательно, они когерентны. Это означает,что между излучёнными вторичными волнами будет наблюдаться интерференция. В тех точках пространства, где световые волны усиливаются, мы видим свет (максимум освещенности), а там, где они гасят друг друга, наблюдается темнота (минимум освещённости).

В физике рассматривают два вида дифракции света: дифракцию Френéля (дифракция на отверстии) и дифракцию Фраунгофера (дифракция на щели).

Дифракция Френеля

Такую дифракцию можно наблюдать, если на пути световой волны расположить непрозрачный экран, в котором проделано узкое круглое отверстие (апертура).

Если бы свет распространялся прямолинейно, на экране наблюдения мы увидели бы светлое пятно. На самом деле, проходя через отверстие, свет расходится. На экране можно увидеть концентрические (имеющие общий центр) чередующиеся светлые и тёмные кольца. Как же они образуются?

Согласно принципу Гюйгенса - Френеля фронт световой волны, достигая плоскости отверстия в экране, становится источником вторичных волн. Так как эти волны когерентны, то они будут интерферировать. В результате в точке наблюдения мы будем наблюдать чередующиеся светлые и тёмные окружности (максимумы и минимумы освещённости).

Суть его в следующем.

Представим, что световая сферическая волна распространяется из источника S 0 в точку наблюдения М . Через точку S проходит сферическая волновая поверхность. Разобьём её на кольцевые зоны таким образом, чтобы расстояние от краёв зоны до точки М отличалось на ½ длины световой волны. Полученные кольцевые зоны называются зонами Френеля. А сам метод разбиения называют методом зон Френеля .

Расстояние от точки М до волновой поверхности первой зоны Френеля равно l + ƛ/2 , до второй зоны l + 2ƛ/2 и т.д.

Каждая зона Френеля рассматривается как источник вторичных волн определённой фазы. Две соседние зоны Френеля находятся в противофазе. Это означает, что вторичные волны, возникающие в соседних зонах, будут ослаблять друг друга в точке наблюдения. Волна из второй зоны будет гасить волну из первой зоны, а волна из третьей зоны будет её усиливать. Четвёртая волна снова ослабит первую и т.д. В результате суммарная амплитуда в точке наблюдения будет равна А = А 1 - А 2 + А 3 - А 4 + …

Если на пути света поставить такое препятствие, которое откроет только первую зону Френеля, то результирующая амплитуда станет равной А 1 . Это означает, что интенсивность излучения в точке наблюдения будет гораздо выше, чем в случае, когда открыты все зоны. А если закрыть все чётные зоны, то интенсивность возрастёт во много раз, так как не будет зон, ослабляющих его.

Чётные или нечётные зоны можно перекрыть с помощью специального устройства, представляющего собой стеклянную пластинку, на которой выгравированы концентрические окружности. Это устройство называют пластинкой Френеля.

К примеру, если внутренние радиусы тёмных колец пластинки совпадает с радиусами нечётных зон Френеля, а внешние - с радиусами чётных, то в этом случае будут «выключены» чётные зоны, что вызовет усиление освещения в точке наблюдения.

Дифракция Фраунгофера

Совсем другая дифракционная картинка возникнет, если расположить на пути плоской монохроматической световой волны перпендикулярно её направлению препятствие в виде экрана с узкой щелью. Вместо светлых и тёмных концентрических окружностей на экране наблюдения мы увидим чередующиеся светлые и тёмные полосы. В центре будет расположена самая яркая полоса. По мере удаления от центра яркость полос будет уменьшаться. Такая дифракция называется дифракцией Фраунгофера. Она возникает, когда на экран падает параллельный пучок света. Чтобы его получить, источник света располагают в фокальной плоскости линзы. Экран наблюдения находится в фокальной плоскости другой линзы, расположенной за щелью.

Если бы свет распространялся прямолинейно, то на экране мы наблюдали бы узкую светлую полоску, проходящую через точку О (фокус линзы). Но почему мы видим другую картину?

Согласно принципу Гюйгенса - Френеля в каждой точке волнового фронта, который достигает щели, образуются вторичные волны. Лучи, идущие от вторичных источников, меняют свое направление и отклоняются от первоначального направления на угол φ . Они собираются в точке P фокальной плоскости линзы.

Разобьём щель на зоны Френеля таким образом, чтобы оптическая разность хода между лучами, исходящими от соседних зон была равна половине длины волны ƛ/2 . Если в щель уложится нечётное число таких зон, то в точке Р мы будем наблюдать максимум освещённости. А если чётное, то минимум.

b · sin φ= + 2 m ·ƛ/2 - условие минимума интенсивности;

b · sin φ= + 2( m +1)·ƛ/2 - условие максимума интенсивности,

где m - число зон, ƛ - длина волны, b - ширина щели.

Угол отклонения зависит от ширины щели:

sin φ= m ·ƛ/ b

Чем шире щель, тем больше сдвинуты к центру положения минимумов, и тем ярче будет максимум в центре. И чем эта щель ỳже, тем более широкой и расплывчатой получится дифракционная картинка.

Дифракционная решётка

Явление дифракции света используют в оптическом приборе, который называется дифракционной решёткой . Мы получим такой прибор, если расположим на какой-либо поверхности через равные промежутки параллельные щели или выступы одинаковой ширины или нанесём на поверхность штрихи. Расстояние между серединами щелей или выступов называется периодом дифракционной решётки и обозначается буквой d . Если на 1 мм решётки приходится N штрихов или щелей, то d = 1/ N мм.

Свет, достигая поверхности решётки, разбивается штрихами или щелями на отдельные когерентные пучки. Каждый из этих пучков подвергается дифракции. В результате интерференции они усиливаются или ослабляются. И на экране мы наблюдаем радужные полосы. Так как угол отклонения зависит от длины волны, а у каждого цвета она своя, то белый свет, проходя через дифракционную решётку, раскладывается в спектр. Причём свет с бóльшей длиной волны отклоняется на бóльший угол. То есть красный свет отклоняется в дифракционной решётке сильнее всего в отличие от призмы, где всё происходит наоборот.

Очень важная характеристика дифракционной решётки - угловая дисперсия:

где φ - разность между максимумами интерференции двух волн,

∆ƛ - величина, на которую отличаются длины двух волн.

k - порядковый номер дифракционного максимума, отсчитанный от центра дифракционной картинки.

Дифракционные решётки делятся на прозрачные и отражательные. В первом случае вырезаются щели в экране из непрозрачного материала или наносятся штрихи на прозрачную поверхность. Во втором - штрихи наносят на зеркальную поверхность.

Компакт-диск, знакомый каждому из нас, представляет собой пример отражательной дифракционной решётки с периодом 1,6 мкм. Третья часть этого периода (0,5 мкм) - это углубление (звуковая дорожка), где хранится записанная информация. Оно рассеивает свет. Остальные 2/3 (1,1 мкм) свет отражают.

Дифракционные решётки широко применяются в спектральных приборах: спектрографах, спектрометрах, спектроскопах для точных измерений длины волны.

1. Дифракция света. Принцип Гюйгенса-Френеля.

2. Дифракция света на щели в параллельных лучах.

3. Дифракционная решетка.

4. Дифракционный спектр.

5. Характеристики дифракционной решетки как спектрального прибора.

6. Рентгеноструктурный анализ.

7. Дифракция света на круглом отверстии. Разрешающая способность диафрагмы.

8. Основные понятия и формулы.

9. Задачи.

В узком, но наиболее употребительном смысле, дифракция света - это огибание лучами света границы непрозрачных тел, проникновение света в область геометрической тени. В явлениях, связанных с дифракцией, имеет место существенное отклонение поведения света от законов геометрической оптики. (Дифракция проявляется не только для света.)

Дифракция - волновое явление, которое наиболее отчетливо проявляется в том случае, когда размеры препятствия соизмеримы (одного порядка) с длиной волны света. С малостью длин видимого света связано достаточно позднее обнаружение дифракции света (16-17 вв.).

21.1. Дифракция света. Принцип Гюйгенса-Френеля

Дифракцией света называется комплекс явлений, которые обусловлены его волновой природой и наблюдаются при распространении света в среде с резкими неоднородностями.

Качественное объяснение дифракции дает принцип Гюйгенса, который устанавливает способ построения фронта волны в момент времени t + Δt если известно его положение в момент времени t.

1. Согласно принципу Гюйгенса, каждая точка волнового фронта является центром когерентных вторичных волн. Огибающая этих волн дает положение фронта волны в следующий момент времени.

Поясним применение принципа Гюйгенса на следующем примере. Пусть на преграду с отверстием падает плоская волна, фронт которой параллелен преграде (рис. 21.1).

Рис. 21.1. Пояснение принципа Гюйгенса

Каждая точка волнового фронта, выделяемого отверстием, служит центром вторичных сферических волн. На рисунке видно, что огибающая этих волн проникает в область геометрической тени, границы которой помечены штриховой линией.

Принцип Гюйгенса ничего не говорит об интенсивности вторичных волн. Этот недостаток был устранен Френелем, который дополнил принцип Гюйгенса представлением об интерференции вторичных волн и их амплитудах. Дополненный таким образом принцип Гюйгенса получил название принципа Гюйгенса-Френеля.

2. Согласно принципу Гюйгенса-Фре- неля величина световых колебаний в некоторой точке О есть результат интерференции в этой точке когерентных вторичных волн, испускаемых всеми элементами волновой поверхности. Амплитуда каждой вторичной волны пропорциональна площади элемента dS, обратно пропорциональна расстоянию r до точки О и убывает при возрастании угла α между нормалью n к элементу dS и направлением на точку О (рис. 21.2).

Рис. 21.2. Испускание вторичных волн элементами волновой поверхности

21.2. Дифракция на щели в параллельных лучах

Вычисления, связанные с применением принципа Гюйгенса- Френеля, в общем случае представляют собой сложную математическую задачу. Однако в ряде случаев, обладающих высокой степенью симметрии, нахождение амплитуды результирующих колебаний может быть выполнено алгебраическим или геометрическим суммированием. Продемонстрируем это путем расчета дифракции света на щели.

Пусть на узкую щель (АВ) в непрозрачной преграде падает плоская монохроматическая световая волна, направление распространения которой перпендикулярно поверхности щели (рис. 21.3, а). За щелью (параллельно ее плоскости) поместим собирающую линзу, в фокальной плоскости которой расположим экран Э. Все вторичные волны, испускаемые с поверхности щели в направлении, параллельном оптической оси линзы (α = 0), приходят в фокус линзы в одинаковой фазе. Поэтому в центре экрана (O) имеет место максимум интерференции для волн любой длины. Его называют максимумом нулевого порядка.

Для того чтобы выяснить характер интерференции вторичных волн, испущенных в других направлениях, разобьем поверхность щели на n одинаковых зон (их называют зонами Френеля) и рассмотрим то направление, для которого выполняется условие:

где b - ширина щели, а λ - длина световой волны.

Лучи вторичных световых волн, идущие в этом направлении, пересекутся в точке О".

Рис. 21.3. Дифракция на одной щели: а - ход лучей; б - распределение интенсивности света (f - фокусное расстояние линзы)

Произведение bsina равно разности хода (δ) между лучами, идущими от краев щели. Тогда разность хода лучей, идущих от соседних зон Френеля, равна λ/2 (см. формулу 21.1). Такие лучи при интерференции взаимно уничтожаются, так как они имеют одинаковые амплитуды и противоположные фазы. Рассмотрим два случая.

1) n = 2k - четное число. В этом случае происходит попарное гашение лучей от всех зон Френеля и в точке О" наблюдается минимум интерференционной картины.

Минимум интенсивности при дифракции на щели наблюдается для направлений лучей вторичных волн, удовлетворяющих условию

Целое число k называется порядком минимума.

2) n = 2k - 1 - нечетное число. В этом случае излучение одной зоны Френеля останется непогашенным и в точке О" будет наблюдаться максимум интерференционной картины.

Максимум интенсивности при дифракции на щели наблюдается для направлений лучей вторичных волн, удовлетворяющих условию:

Целое число k называется порядком максимума. Напомним, что для направления α = 0 имеет место максимум нулевого порядка.

Из формулы (21.3) следует, что при увеличении длины световой волны угол, под которым наблюдается максимум порядка k > 0, возрастает. Это означает, что для одного и того же k ближе всего к центру экрана располагается фиолетовая полоса, а дальше всего - красная.

На рисунке 21.3, б показано распределение интенсивности света на экране в зависимости от расстояния до его центра. Основная часть световой энергии сосредоточена в центральном максимуме. При увеличении порядка максимума его интенсивность быстро уменьшается. Расчеты показывают, что I 0:I 1:I 2 = 1:0,047:0,017.

Если щель освещена белым светом, то на экране центральный максимум будет белым (он общий для всех длин волн). Побочные максимумы будут состоять из цветных полос.

Явление, подобное дифракции на щели, можно наблюдать на лезвии бритвы.

21.3. Дифракционная решетка

При дифракции на щели интенсивности максимумов порядка k > 0 столь незначительны, что не могут быть использованы для решения практических задач. Поэтому в качестве спектрального прибора используется дифракционная решетка, которая представляет собой систему параллельных равноотстоящих щелей. Дифракционную решетку можно получить нанесением непрозрачных штрихов (царапин) на плоскопараллельную стеклянную пластину (рис. 21.4). Пространство между штрихами (щели) пропускает свет.

Штрихи наносятся на поверхность решетки алмазным резцом. Их плотность достигает 2000 штрихов на миллиметр. При этом ширина решетки может быть до 300 мм. Общее число щелей решетки обозначается N.

Расстояние d между центрами или краями соседних щелей называют постоянной (периодом) дифракционной решетки.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей.

Ход лучей в дифракционной решетке представлен на рис. 21.5.

Пусть на решетку падает плоская монохроматическая световая волна, направление распространения которой перпендикулярно плоскости решетки. Тогда поверхности щелей принадлежат одной волновой поверхности и являются источниками когерентных вторичных волн. Рассмотрим вторичные волны, направление распространения которых удовлетворяет условию

После прохождения линзы лучи этих волн пересекутся в точке О".

Произведение dsina равно разности хода (δ) между лучами, идущими от краев соседних щелей. При выполнении условия (21.4) вторичные волны приходят в точку О" в одинаковой фазе и на экране возникает максимум интерференционной картины. Максимумы, удовлетворяющие условию (21.4), называются главными максимумами порядка k. Само условие (21.4) называют основной формулой дифракционной решетки.

Главные максимумы при дифракции на решетке наблюдаются для направлений лучей вторичных волн, удовлетворяющих условию: dsin α = ± κ λ; k = 0,1,2,...

Рис. 21.4. Сечение дифракционной решетки (а) и ее условное обозначение (б)

Рис. 21.5. Дифракция света на дифракционной решетке

По ряду причин, которые здесь не рассматриваются, между главными максимумами располагаются (N - 2) добавочных максимумов. При большом числе щелей их интенсивность ничтожно мала и все пространство между главными максимумами выглядит темным.

Условие (21.4), определяющее положения всех главных максимумов, не учитывает дифракцию на отдельной щели. Может получиться так, что для некоторого направления будут одновременно выполняться условие максимума для решетки (21.4) и условие минимума для щели (21.2). В этом случае соответствующий главный максимум не возникает (формально он есть, но его интенсивность равна нулю).

Чем больше число щелей в дифракционной решетке (N), тем большее количество световой энергии проходит через решетку, тем более интенсивными и более острыми будут максимумы. На рисунке 21.6 представлены графики распределения интенсивностей, полученные от решеток с разным числом щелей (N). Периоды (d) и ширина щелей (b) у всех решеток одинаковы.

Рис. 21.6. Распределение интенсивностей при разных значениях N

21.4. Дифракционный спектр

Из основной формулы дифракционной решетки (21.4) видно, что угол дифракции α, под которым образуются главные максимумы, зависит от длины волны падающего света. Поэтому максимумы интенсивности, соответствующие различным длинам волн, получаются в различных местах экрана. Это и позволяет использовать решетку как спектральный прибор.

Дифракционный спектр - спектр, полученный с помощью дифракционной решетки.

При падении на дифракционную решетку белого света все максимумы, кроме центрального, разложатся в спектр. Положение максимума порядка k для света с длиной волны λ определяется формулой:

Чем больше длина волны (λ), тем дальше от центра отстоит k-й максимум. Поэтому фиолетовая область каждого главного максимума будет обращена к центру дифракционной картины, а красная - наружу. Заметим, что при разложении белого света призмой сильнее отклоняются фиолетовые лучи.

Записывая основную формулу решетки (21.4), мы указали, что k - целое число. Насколько велико оно может быть? Ответ на этот вопрос дает неравенство |sinα| < 1. Из формулы (21.5) найдем

где L - ширина решетки, а N - число штрихов.

Например, для решетки с плотностью 500 штрихов на мм d = 1/500 мм = 2х10 -6 м. Для зеленого света с λ = 520 нм = 520х10 -9 м получим k < 2х10 -6 /(520 х10 -9) < 3,8. Таким образом, для такой решетки (весьма средней) порядок наблюдаемого максимума не превышает 3.

21.5. Характеристики дифракционной решетки как спектрального прибора

Основная формула дифракционной решетки (21.4) позволяет определить длину волны света, измеряя угол α, соответствующий положению k-го максимума. Таким образом, дифракционная решетка позволяет получать и анализировать спектры сложного света.

Спектральные характеристики решетки

Угловая дисперсия - величина, равная отношению изменения угла, под которым наблюдается дифракционный максимум, к изменению длины волны:

где k - порядок максимума, α - угол, под которым он наблюдается.

Угловая дисперсия тем выше, чем больше порядок k спектра и чем меньше период решетки (d).

Разрешающая способность (разрешающая сила) дифракционной решетки - величина, характеризующая ее способность давать

где k - порядок максимума, а N - число штрихов решетки.

Из формулы видно, что близкие линии, которые сливаются в спектре первого порядка, могут восприниматься отдельно в спектрах второго или третьего порядков.

21.6. Рентгеноструктурный анализ

Основная формула дифракционной решетки может быть использована не только для определения длины волны, но и для решения обратной задачи - нахождения постоянной дифракционной решетки по известной длине волны.

В качестве дифракционной решетки можно взять структурную решетку кристалла. Если на простую кристаллическую решетку направить поток рентгеновских лучей под некоторым углом θ (рис. 21.7), то они будут дифрагировать, так как расстояние между рассеивающими центрами (атомами) в кристалле соответствует

длине волны рентгеновского излучения. Если на некотором расстоянии от кристалла поместить фотопластинку, то она зарегистрирует интерференцию отраженных лучей.

где d - межплоскостное расстояние в кристалле, θ - угол между плоскостью

Рис. 21.7. Дифракция рентгеновских лучей на простой кристаллической решетке; точками указано расположение атомов

кристалла и падающим рентгеновским лучом (угол скольжения), λ - длина волны рентгеновского излучения. Соотношение (21.11) называется условием Брэгга-Вульфа.

Если известна длина волны рентгеновского излучения и измерен угол θ, отвечающий условию (21.11), то можно определить межплоскостное (межатомное) расстояние d. На этом основан рентгеноструктурный анализ.

Рентгеноструктурный анализ - метод определения структуры вещества путем исследования закономерностей дифракции рентгеновского излучения на изучаемых образцах.

Рентгеновские дифракционные картины очень сложны, так как кристалл представляет собой трехмерный объект и рентгеновские лучи могут дифрагировать на различных плоскостях под разными углами. Если вещество представляет собой монокристалл, то дифракционная картина представляет собой чередование темных (засвеченных) и светлых (незасвеченных) пятен (рис. 21.8, а).

В том случае когда вещество представляет собой смесь большого числа очень маленьких кристалликов (как в металле или порошке), возникает серия колец (рис. 21.8, б). Каждое кольцо соответствует дифракционному максимуму определенного порядка k, при этом рентгенограмма образуется в виде окружностей (рис. 21.8, б).

Рис. 21.8. Рентгенограмма для монокристалла (а), рентгенограмма для поликристалла (б)

Рентгеноструктурный анализ используют и для исследования структур биологических систем. Например, этим методом была установлена структура ДНК.

21.7. Дифракция света на круглом отверстии. Разрешающая способность диафрагмы

В заключение рассмотрим вопрос о дифракции света на круглом отверстии, который представляет большой практический интерес. Такими отверстиями являются, например, зрачок глаза и объектив микроскопа. Пусть на линзу падает свет от точечного источника. Линза является отверстием, которое пропускает только часть световой волны. Вследствие дифракции на экране, расположенном за линзой, возникнет дифракционная картина, показанная на рис. 21.9, а.

Как и для щели, интенсивности побочных максимумов малы. Центральный максимум в виде светлого кружка (дифракционное пятно) и является изображением светящейся точки.

Диаметр дифракционного пятна определяется формулой:

где f - фокусное расстояние линзы, а d - ее диаметр.

Если на отверстие (диафрагму) падает свет от двух точечных источников, то в зависимости от углового расстояния между ними (β) их дифракционные пятна могут восприниматься раздельно (рис. 21.9, б) или сливаться (рис. 21.9, в).

Приведем без вывода формулу, которая обеспечивает раздельное изображение близких точечных источников на экране (разрешающая способность диафрагмы):

где λ - длина волны падающего света, d - диаметр отверстия (диафрагмы), β - угловое расстояние между источниками.

Рис. 21.9. Дифракция на круглом отверстии от двух точечных источников

21.8. Основные понятия и формулы

Окончание таблицы

21.9. Задачи

1. Длина волны света, падающего на щель перпендикулярно ее плоскости, укладывается в ширине щели 6 раз. Под каким углом будет виден 3 дифракционный минимум?

2. Определить период решетки шириной L = 2,5 см, имеющей N = 12500 штрихов. Ответ записать в микрометрах.

Решение

d = L/N = 25 000 мкм/12 500 = 2 мкм. Ответ: d = 2 мкм.

3. Чему равна постоянная дифракционной решетки, если в спектре 2-го порядка красная линия (700 нм) видна под углом 30°?

4. Дифракционная решетка содержит N = 600 штрихов на L = 1 мм. Найти наибольший порядок спектра для света с длиной волны λ = 600 нм.

5. Оранжевый свет с длиной волны 600 нм и зеленый свет с длиной волны 540 нм проходят через дифракционную решетку, имеющую 4000 штрихов на сантиметр. Чему равно угловое расстояние между оранжевым и зеленым максимумами: а) первого порядка; б) третьего порядка?

Δα = α ор - α з = 13,88° - 12,47° = 1,41°.

6. Найти наибольший порядок спектра для желтой линии натрия λ = 589 нм, если постоянная решетки равна d = 2 мкм.

Решение

Приведем d и λ к одинаковым единицам: d = 2 мкм = 2000 нм. По формуле (21.6) найдем k < d/λ = 2000/ 589 = 3,4. Ответ: k = 3.

7. Дифракционную решетку с числом щелей N = 10 000 используют для исследования спектра света в области 600 нм. Найти минимальную разность длин волн, которую можно обнаружить такой решеткой при наблюдении максимумов второго порядка.

Дифракция

Изначально явление дифракции трактовалось как огибание волной препятствия , то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

  • в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях - как расширение угла распространения волновых пучков или их отклонение в определённом направлении;
  • в разложении волн по их частотному спектру ;
  • в преобразовании поляризации волн;
  • в изменении фазовой структуры волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

Тонкости в толковании термина «дифракция»

В явлении дифракции важную роль играют исходные размеры области волнового поля и исходная структура волнового поля, которая подвержена существенной трансформации в случае, если элементы структуры волнового поля сравнимы с длиной волны или меньше её.

Например, ограниченный в пространстве волновой пучок имеет свойство «расходиться» («расплываться») в пространстве по мере распространения даже в однородной среде. Данное явление не описывается законами геометрической оптики и относится к дифракционным явлениям (дифракционная расходимость, дифракционное расплывание волнового пучка).

Исходное ограничение волнового поля в пространстве и его определённая структура могут возникнуть не только за счёт присутствия поглощающих или отражающих элементов, но и, например, при порождении (генерации, излучении) данного волнового поля.

Следует заметить, что в средах, в которых скорость волны плавно (по сравнению с длиной волны) меняется от точки к точке, распространение волнового пучка является криволинейным (см. градиентная оптика , градиентные волноводы, мираж). При этом волна также может огибать препятствие. Однако такое криволинейное распространение волны может быть описано с помощью уравнений геометрической оптики, и это явление не относится к дифракции.

Вместе с тем, во многих случаях дифракция может быть и не связана с огибанием препятствия (но всегда обусловлена его наличием). Такова, например, дифракция на непоглощающих (прозрачных), так называемых фазовых, структурах.

Поскольку, с одной стороны, явление дифракции света оказалось невозможным объяснить с точки зрения лучевой модели, то есть с точки зрения геометрической оптики, а с другой стороны, дифракция получила исчерпывающее объяснение в рамках волновой теории, то наблюдается тенденция понимать её проявление как любое отступление от законов геометрической оптики .

При этом следует заметить, что некоторые волновые явления не описываются законами геометрической оптики и, в то же время, не относятся к дифракции. К таким типично волновым явлениям относится, например, вращение плоскости поляризации световой волны в оптически активной среде, которое дифракцией не является.

Вместе с тем, единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации, в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу.

Ещё один пример: с точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями).

Раздел оптики «Оптика кристаллов», имеющей дело с оптической анизотропией среды, также имеет лишь косвенное отношение к проблеме дифракции. В то же самое время он нуждается в корректировке используемых представлений геометрической оптики. Это связано с различием в понятии луча (как направления распространения света) и распространения волнового фронта (то есть направления нормали к нему)

Отступление от прямолинейности распространения света наблюдается также в сильных полях тяготения. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в её поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия. Однако, это явление также не относится к дифракции.

Частные случаи дифракции

Исторически в проблеме дифракции сначала рассматривались два крайних случая, связанных с ограничением препятствием (экраном с дыркой) сферической волны и это была дифракция Френеля , либо плоской волны на щели или системе отверстий - дифракция Фраунгофера

Дифракция на щели

Распределение интенсивности света при дифракции на щели

В качестве примера рассмотрим дифракционную картину возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае. Для написания исходного уравнения используем принцип Гюйгенса .

Рассмотрим монохроматическую плоскую волну с амплитудой с длиной волны λ, падающую на экран с щелью ширины a .

пусть (x′,y′,0) - точка внутри разреза, по которому мы интегрируем. Мы хотим узнать интенсивность в точке (x,0,z). Щель имеет конечный размер в x направлении (от до ), и бесконечна в y направлении ([, ]).

Расстояние r от щели определяется как:

Дифракция на отверстии

Дифракция звука и ультразвуковая локация

Дифракция радиоволн и радиолокация

Исследованием дифракции радиоволн занимается геометрическая теория дифракции

Дифракционная решётка

Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.

Дифракция рентгеновских лучей в кристаллах и рентгеноструктурный анализ

Дифракция света на ультразвуке

Одним из наглядных примеров дифракции света на ультразвуке является дифракция света на ультразвуке в жидкости. В одной из постановок такого эксперимента в оптически-прозрачной ванночке в форме прямоугольного параллелепипеда с оптически-прозрачной жидкостью с помощью пластинки из пьезоматериала на частоте ультразвука возбуждается стоячая волна . В её узлах плотность воды ниже, и как следствие ниже её оптическая плотность , в пучностях - выше. Таким образом, при этих условиях ванночка с водой становится для световой волны фазовой дифракционной решёткой, на которой осуществляется дифракция в виде изменения фазовой структуры волн, что можно наблюдать в оптический микроскоп методом фазового контраста или методом тёмного поля .

Дифракция электронов

Дифракция электронов - процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет свойства, аналогичные свойствам волны. При выполнении некоторых условий, пропуская пучок электронов через материал можно зафиксировать дифракционную картину, соответствующую структуре материала. Процесс дифракции электронов получил широкое применение в аналитических исследованиях кристаллических структур металлов, сплавов, полупроводниковых материалов.

Брегговская дифракция

Дифракция от трехмерной периодической структуры, такой как атомы в кристалле называется дифракцией Брегга. Это похоже на то, что происходит, когда волны рассеиваются на дифракционной решётке. Брегговская дифракция является следствием интерференции между волнами, отражёнными от кристаллических плоскостей. Условие возникновения интерференции определяется законом Вульфа-Брегга:

,

D - расстояние между кристаллическими плоскостями, θ угол скольжения - дополнительный угол к углу падения, λ - длина волны , n (n = 1,2…) - целое число называемое порядком дифракции .

Брегговская дифракция может осуществляться при использовании света с очень маленькой длиной волны, такого как рентгеновское излучение, либо волны материи, такие как нейтроны и электроны , длины волн которых сравнимы или много меньше, чем межатомное расстояние. Получаемые данные дают информацию о межплоскостных расстояния, что позволяет вывести кристаллическую структуру. Дифракционный контраст, в электронных микроскопах и рентгеновских топографических устройствах, в частности, также является мощным инструментом для изучения отдельных дефектов и локальных полей деформации в кристаллах.

Дифракция частиц (нейтронов, атомов, молекул)

История исследований

Основы теории дифракции были заложены при изучении дифракции света в первой половине XIX века в трудах Юнга и Френеля . Среди других учёных, которые внесли значительный вклад в изучение дифракции: Гримальди , Гюйгенс , Араго , Пуассон , Гаусс , Фраунгофер , Бабине, Кирхгоф , Аббе , У. Г. Брэгг и У. Л. Брэгг , фон Лауэ , Роуланд, Зоммерфельд, Леонтович , Фок , Ван-Циттерт, Цернике (см. История оптики).

Обнаружение дифракции частиц (электронов) в 1927 году (опыт Дэвиссона и Джермера) сыграло большую роль в подтверждении существования волн де Бройля и в подтверждении концепции корпускулярно-волнового дуализма (идеи двойственной природы волн и частиц). В и XXI веках продолжились исследования дифракции волн на сложных структурах.

Дифракция в фотографии

Дифракцию можно наблюдать в фотографии : чрезмерное закрытие диафрагмы (относительного отверстия) приводит к падению резкости. Поэтому для сохранения оптимально резкого изображения на фотографии не рекомендуется полностью закрывать диафрагму. Нужно отметить, что для каждого объектива существует свои границы до которых стоит закрывать диафрагму, в большинстве случаев они равны f/11.

См. также

  • Рассеяние волн
  • История оптики

Примечания

Литература

  • Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика» , том II). - ISBN 5-02-014420-7
  • Сивухин Д. В. Общий курс физики. - М .. - Т. IV. Оптика.
  • И. Г. Кондратьев, Г. Д. Малюжинец Дифракция волн // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин , А. М. Бонч-Бруевич , А. С. Боровик-Романов , Б. К. Вайнштейн , С. В. Вонсовский , А. В. Гапонов-Грехов , С. С. Герштейн , И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич , М. Е. Жаботинский, Д. Н. Зубарев , Б. Б. Кадомцев , И. С. Шапиро, Д. В. Ширков ; под общ. ред. А. М. Прохорова . - М .: Советская энциклопедия, 1988-1998.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Дифракция" в других словарях:

    Дифракция - Дифракция. Волны на воде при наличии препятствий различных размеров. Чем больше длина волн по сравнению с размером препятствия, тем сильнее выражена дифракция в области тени: а листья осоки; б плавающее бревно (малая длина волны); в палка,… … Иллюстрированный энциклопедический словарь

    ДИФРАКЦИЯ, распространение волны, например, луча света, при прохождении сквозь узкое отверстие или при попадании на край препятствия (например, при восприятии звука, идущего из за угла). Позволяет получить данные о длине световой волны и о… … Научно-технический энциклопедический словарь

    дифракция - Совокупность явлений, связанных с отклонением поведения акустических волн от законов геометрической (лучевой) акустики, обусловленным волновой природой упругих волн. Дифракция наблюдается, например, при излучении волн источником ограниченных… … Справочник технического переводчика

    Микродифракция, рассеяние, отклонение, диффракция Словарь русских синонимов. дифракция сущ., кол во синонимов: 4 диффракция (1) … Словарь синонимов

    дифракция - и, ж. diffraction f. <лат. diffractus преломлённый. В физике огибание препятствий волнами (световыми, звуковыми и т. п.) Дифракция звука. БАС 2. Дифракционный ая, ое. Дифракционная решетка. СИС 1954. Лекс. Ян. 1803: диффракция; САН 1895:… … Исторический словарь галлицизмов русского языка

Набежал легкий ветерок, и по поверхности воды побежала рябь (волна малой длины и амплитуды), встречая на своем пути различные препятствия, над поверхностью воды, стебли растений, сук дерева. С подветренной стороны за суком вода спокойная, волнения нет, а стебли растений волна огибает.

ДИФРАКЦИЯ ВОЛН (от лат. difractus – разломанный) огибание волнами различных препятствий. Дифракция волн свойственна всякому волновому движению; имеет место, если размеры препятствия меньше длины волны или сравнимы с ней.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. При дифракции световые волны огибают границы непрозрачных тел и могут проникать в область геометрической тени.
Препятствием может быть отверстие, щель, край непрозрачной преграды.

Проявляется дифракция света в том, что свет проникает в область геометрической тени в нарушение закона прямолинейного распространения света. Например, пропуская свет через маленькое круглое отверстие, обнаруживаем на экране светлое пятно большего размера, чем следовало ожидать при прямолинейном распространении.

Из-за того, что длина световой волны мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции нужно использовать очень маленькие препятствия или располагать экран далеко от препятствий.

Дифракция объясняется на основе принципа Гюйгенса–Френеля: каждая точка волнового фронта является источником вторичных волн. Дифракционная картина является результатом интерференции вторичных световых волн.

Волны, образованные в точках А и В, являются когерентными. Что наблюдается на экране в точках О, M, N?

Дифракция хорошо наблюдается только на расстояния

где R – характерные размеры препятствия. На меньших расстояниях применимы законы геометрической оптики.

Явление дифракции накладывает ограничение на разрешающую способность оптических инструментов (например, телескопа). Вследствие ее в фокальной плоскости телескопа образуется сложная дифракционная картина.

Дифракционная решетка – представляет собой совокупность большого числа находящихся в одной плоскости узких, параллельных, близко расположенных друг к другу прозрачных для света участков (щелей), разделенных непрозрачными промежутками.

Дифракционные решетки бывают отражающие и пропускающие свет. Принцип их действия одинаков. Решетку изготовляют с помощью делительной машины, наносящей периодические параллельные штрихи на стеклянной или металлической пластине. Хорошая дифракционная решетка содержит до 100 000 штрихов. Обозначим:

a – ширина прозрачных для света щелей (или отражающих полос);
b – ширина непрозрачных промежутков (или рассеивающих свет участков).
Величина d = a + b называется периодом (или постоянной) дифракционной решетки.

Дифракционная картина, создаваемая решеткой сложная . В ней наблюдаются главные максимумы и минимумы, побочные максимумы, дополнительные минимумы, обусловленные дифракцией на щели.
Практической значение при исследовании спектров с помощью дифракционной решетки имеют главные максимумы, представляющие собой узкие яркие линии в спектре. Если на дифракционную решетку падает белый свет, волны каждого цвета, входящего в его состав, образуют свои дифракционные максимумы . Положение максимума зависит от длины волны. Нулевые максимумы (k = 0 ) для всех длин волн образуются в направлениях падающего пучка = 0 ), поэтому в дифракционном спектре есть центральная светлая полоса. Слева и справа от нее наблюдаются цветные дифракционные максимумы разного порядка. Так как угол дифракции пропорционален длине волны, то красные лучи отклоняются сильнее, чем фиолетовые. Обратите внимание на различие в порядке расположения цветов в дифракционном и призматическом спектрах. Благодаря этому дифракционная решетка используется в качестве спектрального аппарата, наряду с призмой.

При прохождении через дифракционную решетку световая волна длиной λ на экране будет давать последовательность минимумов и максимумов интенсивности. Максимумы интенсивности будут наблюдаться под углом β:

где k – целое число, называемое порядком дифракционного максимума.

Опорный конспект:

Распространение луча в оптически однородной среде — прямолинейное, однако в природе существует ряд явлений, где можно наблюдать отклонение от этого условия.

Дифракция – явление огибания световыми волнами встреченных препятствий. В школьной физике изучаются две дифракционные системы (системы, при прохождении луча в которых наблюдается дифракция):

  • дифракция на щели (прямоугольном отверстии)
  • дифракция на решётке (набор равноотстоящих друг от друга щелей)

— дифракция на прямоугольном отверстии (рис. 1).

Рис. 1. Дифракция на щели

Пусть дана плоскость со щелью, шириной , на которую под прямым углом падает пучок света А. Большинство света проходит на экран, однако часть лучей дифрагирует на краях щели (т.е. отклоняется от своего первоначального направления). Далее эти лучи друг с другом с образованием дифракционной картины на экране (чередование ярких и тёмных областей). Рассмотрение законов интерференции достаточно сложно, поэтому ограничимся основными выводами.

Полученная дифракционная картина на экране состоит из чередующихся областей с дифракционными максимумами (максимально светлыми областями) и дифракционными минимумами (максимально тёмными областями). Эта картина симметрична относительно центрального светового пучка. Положение максимумов и минимумов описывается углом относительно вертикали, под которым они видны, и зависит от размера щели и длины волны падающего излучения. Положение этих областей можно найти используя ряд соотношений:

  • для дифракционных максимумов

Нулевым максимумом дифракции называется центральная точка на экране под щелью (рис. 1).

  • для дифракционных минимумов

Вывод : по условиям задачи необходимо выяснить: максимум или минимум дифракции необходимо найти и использовать соответствующее соотношение (1) или (2).

Дифракция на дифракционной решётке.

Дифракционной решёткой называется система, состоящая из чередующихся щелей, равноотстоящих друг от друга (рис. 2).


Рис. 2. Дифракционная решётка (лучи)

Так же, как и для щели, на экране после дифракционной решётки будет наблюдаться дифракционная картина: чередование светлых и тёмных областей. Вся картина есть результат интерференции световых лучей друг с другом, однако на картину от одной щели будет воздействовать лучи от других щелей. Тогда дифракционная картина должна зависеть от количества щелей, их размеров и близкорасположенности.

Введём новое понятие — постоянная дифракционной решётки :

Тогда положения максимумов и минимумов дифракции:

  • для главных дифракционных максимумов (рис. 3)


Похожие публикации