Основателями клеточной теории являются. Клетка. История изучения клетки. Клеточная теория. Как появилась клеточная теория

Теория цитогенеза сыграла большую положительную роль, ибо, поставив во всей широте вопрос о возникновении клеток, она подвела таким образом базу под проблему их гомологичности.

Теодор Шванн считал, что в явлении цитогенсза впервые был найден общий принцип развития микроскопических структур всех организмов, позволяющий делать заключение о принципиальном сходстве клеток всех тканей и органов. Как мы уже видели выше, сама идея всеобщности клеточной структуры в той или иной форме высказывалась целым рядом исследователей. Но эта мысль нуждалась в четкой формулировке и (что особенно важно) в убедительных доказательствах. Это было блестяще выполнено Шванном, напечатавшим в 1839 г. свой классический труд под названием «Микроскопическое исследование о соответствии в структуре и росте животных и растений». Эта книга быстро получила широкую известность.

Первая часть книги носит чисто описательный характер Шванн старается доказать, что клетки животных морфологически принципиально сходны с клетками растительными. Основным объектом Шванна, из которого он исходил, была ткань хряща и ткань хорды. Действительно, нетрудно видеть, что клеточное строение этих тканей не оставляет никаких сомнений. Клетки повсюду хорошо отграничены оболочками как друг от друга, так и от окружающей среды. Важно отметить, что Шванн, как и все остальные ученые того времени, придерживался взгляда, что наиболее важной структурой клетки является ее оболочка, и поэтому, доказывая всеобщность клеточного строения тканей животных, он всюду стремился доказать наличие четкой и ясной оболочки. Немалые трудности поэтому доставили ему такие ткани, как мышечная, которая состоит из многоядерных волокон. Большие трудности для объяснения представляло также наличие большого количества межуточного вещества в соединительной ткани с типичными для нее волокнами (коллагеновыми). Для последних Шванн принимал, что они образуются путем превращения целых клеток.

Доказав всеобщность клеточного строения, Шванн устанавливает, что все клетки, сколь бы они различны ни были, возникают всегда принципиально сходным образом, а именно путем цитогенеза. Небольшое разногласие между представлением Шлейдена и Шванна заключается в том, что последний считал возможным возникновение новых клеток не только внутри старых за счет зернышек их содержимого, но также из живой бластемы, которая может находиться и между клетками. Принципиального значения эти разногласия, однако, не имеют. Установление самого факта - признание цитогенеза - важно потому, что таким образом выдвигается принцип, позволяющий говорить о сходстве развита клеток всех многоклеточных организмов - как растений, так и животных.

Отсюда уже следовал и вывод о принципиальной сравнимости всех клеток , поскольку признавалось наличие общего принципа развития для всех элементарных структурных частиц организма (клеток).

Работа Шванна богата мыслями, она впервые привела в систему различные факты. Для клеточной теории в целом на данном этапе было неважно, как конкретно надо трактовать процесс возникновения клеток, их генезис. Существенно было установить сам принцип, что все клетки возникают одним и тем же путем .

В своей книге Шванн не ограничился только перечислением ряда фактических данных. В ней мы находим главу «Теория клеток». Она начинается рассуждением о значении теории для конкретного исследования и о значении телеологической и физической (материалистической), как он их называет, точек зрения на природу вещей.

Основные положения клеточной теории, сформулированной Шванном, таковы: первое положение заключается в утверждении, что все ткани состоят из клеток . Второе говорит об общем принципе развития этих структур . Но здесь же Шванн ставит вопрос и о том, какова природа тех основных сил организма, которые обусловливают данный процесс. С телеологической точки зрения, как подчеркивает сам Шванн, силы, существующие в организме, формируют его развитие согласно предсуществующей идее, и основная сила организма (или «душа») развивается согласно определенной цели. Сам он относится отрицательно к признанию нематериального, наделенного сознанием принципа развития. Он прямо пишет, что силы организма совпадают с силами неорганического мира и действуют по законам необходимости без всякой связи с особой целью. В качестве аналогии он приводит в пример силы, действующие в пределах нашей планетной системы. Эти силы действуют по законам необходимости, как и все физические явления, но тем не менее планетная система представляется нам целесообразно организованной. Причина этой целесообразности лежит, как говорит Шванн, «не в самих этих силах, а в Том, Кто так создал материю с ее силами, что они, следуя слепым законам, создают целесообразное целое».

Таким образом, Шванн четко отличал естественные закономерности, по которым протекают все процессы в природе, от «божественной причины». Так, процесс цитогенеза Шванн сравнивает с процессами кристаллизации и отводит им в свой книге довольно много места. Отсюда следует вывод, что поскольку в неорганическом мире (кристаллизация) и в органическом мире (цитогенез) мы наблюдаем сходные процессы, то, следовательно, надо заключить, что все эти процессы обусловливаются одними и теми же силами. Другими словами, процесс клеткообразования Шванн ставит наряду с физико-химическими процессами, отмечая лишь, что эти процессы более сложны и требуют определенных благоприятных условий для своего осуществления. Однако Шванн специально указывал, что не следует ставить знака равенства между процессом кристаллизации и пластическими силами клеток.

Наконец третьим пунктом клеточной теории Шванна является представление о самостоятельной жизнедеятельности каждой отдельной клетки . Шванн представлял себе совокупную деятельность организма как сумму жизнедеятельности отдельных клеток .

Любопытно, однако, отметить, что Швами предвосхитил и такое возражение, что отдельная клетка, будучи изолирована от организма, существовать не может. Он писал, что это возражение против теории биологической самостоятельности клетки аналогично тому, как если бы мы отрицали самостоятельную жизнь пчелы, которая, как известно, вне семьи также быстро гибнет. Этому сравнению нельзя отказать в остроумии, однако логика показывает, что аналогия не есть еще доказательство. Аналогий, при желании, можно подобрать сколько угодно, но они не двигают науку вперед, так как не выявляют сущности явлений.

Итак, третий пункт клеточной теории Шванна можно вкратце формулировать и так, что вопрос о свойствах организма сводится по существу к арифметической сумме свойств отдельных клеток.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

В наше время ни для кого не секрет, что вся живая материя состоит из клеток, имеющих в свою очередь интересное и сложное строение. Но в прошлом открытие этого факта имело большое научное значение для развития биологии, и учение о клеточном строении органики вошло в историю под названием «клеточная теория».

История клеточной теории

Открытие клеточной теории берет свое начало в далеком 1655 году, когда английский ученый Р. Гук на основе своих многочисленных наблюдений за живой материей впервые предложил термин «клетка». Сделал он это в своем знаменитом научном труде «Микрография», который впоследствии вдохновил другого талантливого ученого из Голландии Левенгука на изобретение первого .

Появление микроскопа и практическое наблюдение через него подтвердило идеи Гука, и клеточная теория получила дальнейшее развитие. И вот уже в 1670-е годы итальянский врач Мальпиги и английский натуралист Дрю описывают различные формы клеток у растений. В то же время сам изобретатель микроскопа Левенгук наблюдает мир одноклеточных организмов – бактерий, инфузорий, амеб. Будучи человеком творческим Левенгук первым изображает их на своих рисунках.

Так выглядели его рисунки.

Тем не менее, ученые XVII века представляли клетки в качестве пустот в непрерывной массе растительных тканей, о внутреннем строении клетки еще ничего не было известно. Не было значительного прогресса в этом направлении и в следующем XVIII веке. Хотя в это время стоит отметить труды немецкого ученого Фридриха Вольфа, который пытался сравнивать развитие клеток у растений и животных.

Первые попытки проникнуть во внутренний мир клетки были предприняты уже в XIХ веке, чему способствовало появление улучшенных микроскопов, в том числе наличие у последних ахроматических линз. Так ученые Линк и Молднхоуэр обнаруживают в клетках наличие самостоятельных стенок, то, что позже станет известно как . А в 1830 году английский ботаник Роберт Броун впервые описывает ядро клетки, как важную ее составную часть.

Во второй половине XVII века учение о клеточной теории и строении клетки оказывается в центре внимания всех ученых-биологов, и даже выделяется в отдельную под науку – цитологию.

Основные положения клеточной теории Шванна и Шлейдена

Большой вклад в развитие клеточной теории на этом этапе был сделан немецкими учеными Т. Шванном и М. Шлейденом, которые в частности сформулировали основные постулаты клеточной теории, вот они:

  • Все без исключения организмы состоят из маленьких одинаковых частей – клеток, которые растут и развиваются по одним и тем же законам.
  • Общий принцип развития элементарных частей организма – клеткообразование.
  • Каждая клетка представляет собой сложный биологический механизм и является своего рода отдельным индивидом. Совокупность же клеток образует ткани.
  • В клетках происходят разные процессы, такие как возникновение новых клеток, увеличение клеток в размерах, утолщение их стенок и так далее.

Пожалуй, тут заключена основная суть клеточной теории.

Вклад Вирхова в развитие клеточной теории

Правда, Шванн и Шлейден ошибочно полагали, что клетки образуются из некого «неклеточного вещества». Эта идея впоследствии была опровергнута другим известным немецким биологом Р. Вирховым, который доказал, что «всякая клетка может происходить исключительно из другой клетки», подобно тому как растение может происходить только от другого растения, и животное только от другого животного. Это положение стало также одним из важных частей клеточной теории.

Современная клеточная теория

Идеи Шванна, Шлейдена, Вирхова и других создателей и авторов этой теории, хотя и были передовыми и революционными как для своего времени, тем не менее, сейчас им уже почти два века, и с тех пор развитие науки в этом направлении продвинулось еще дальше. О чем же нам говорят основные положения современной клеточной теории? Вот о чем:

И вполне возможно, что в будущем клеточная теория получит еще большее развитие, учеными биологами будут найдены новые не известные ранее складовые части клетки, будут открыты новые механизмы ее работы, ведь клетка хранит в себе еще немало тайн и загадок. А наиболее интересная загадка, которую хранит в себе клетка – это проблема ее старения (и впоследствии умирания), и если ученым удастся ее решить, хотя бы частично, как знать, насколько смогла бы увеличиться продолжительность человеческой жизни, но это уже тема для другой статьи.

Клеточная теория, видео

В завершение по традиции вашему вниманию образовательное видео по теме нашей статьи.

– элементарная структурно-функциональная единица всех живых организмов Она может существовать как отдельный организм (бактерии, простейшие, водоросли, грибы), так и в составе тканей многоклеточных животных, растений и грибов.

История изучения клетки. Клеточная теория.

Жизнедеятельность организмов на клеточном уровне изучает наука цитология или биология клетки. Возникновение цитологии как науки тесно связано с созданием клеточной теории, самого широкого и фундаментального из всех биологических обобщений.

История изучения клетки неразрывно связана с развитием методов исследований, в первую очередь с развитием микроскопической техники. Впервые микроскоп применил для исследований растительных и животных тканей английский физик и ботаник Роберт Гук (1665 г.). Изучая срез пробки сердцевины бузины, он обнаружил отдельные полости – ячейки или клетки.

В 1674 г. знаменитый голландский исследователь Антони де Левенгук усовершенствовал микроскоп (увеличивал в 270 раз), обнаружил в капле воды одноклеточные организмы. В зубном налёте обнаружил бактерий, открыл и описал эритроциты, сперматозоиды, а из животных тканей описал строение сердечной мышцы.

  • 1827 г. – наш соотечественник К. Бэр открыл яйцеклетку.
  • 1831 г. – английский ботаник Роберт Броун описал ядро в клетках растений.
  • 1838 г. – немецкий ботаник Матиас Шлейден выдвинул идею об идентичности растительных клеток с точки зрения их развития.
  • 1839 г. – немецкий зоолог Теодор Шванн сделал окончательное обобщение, что клетки растений и животных имеют общее строение. В своей работе «Микроскопические исследования о соответствии в структуре и росте животных и растений» он сформулировал клеточную теорию, согласно которой клетки являются структурной и функциональной основой живых организмов.
  • 1858 г. – немецкий патолог Рудольф Вирхов применил клеточную теорию в патологии и дополнил её важными положениями:

1) новая клетка может возникнуть только из предшествующей клетки;

2) болезни человека имеют в своей основе нарушение строения клеток.

Клеточная теория в современном виде включает три главных положения:

1) клетка – элементарная структурная, функциональная и генетическая единица всего живого – первоисточник жизни.

2) новые клетки образуются в результате деления предшествующих; клетка – элементарная единица развития живого.

3) структурно-функциональными единицами многоклеточных организмов являются клетки.

Клеточная теория оказала плодотворное влияние на все направления биологических исследований.

Очень важное открытие в 30-х годах XIX в. сделал шотландский ученый Роберт Броун . Наблюдая в микроскоп строение листа растения, он обнаружил внутри клетки круглое плотное образование, которое назвал ядром . Это было замечательное открытие, поскольку оно создало основы для сопоставления всех клеток.
В 1838 г. немецкий ученый М. Шлейден первым пришел в заключению о том, что ядро является обязательным структурным элементом всех растительных клеток. Познакомившись с этом исследованием, Т. Шванн , соотечественник Шлейдена, был удивлен: точно такие же образования он обнаружил и в животных клетках, изучением которых занимался. Сопоставление большого числа растительных и животных клеток привело его к неожиданному выводу: все клетки, несмотря на их огромное разнообразие, сходны - у них есть ядра.
Обобщив разрозненные факты, Т. Шванн и М. Шлейден сформулировали основное положение клеточной теории: все растительные и животные организмы состоят из клеток, сходных по строению.

Немецкий биолог Рудольф Вирхов спустя 20 лет внес очень важное дополнение в клеточную теорию. Он доказал, что количество клеток в организме увеличивается в результате клеточного деления, т.е. клетка происходит только от клетки.
Благодаря дальнейшему усовершенствованию светового микроскопа и методом окраски клеток открытия следовали одно за другим. За сравнительно короткое время были выделены и описаны не только ядро и цитоплазма клеток, но и многие заключенные в ней части - органоиды .

Основные положения клеточной теории на современном этапе развития биологии формулируются так:

  1. Клетка является основной структурной и функциональной единицей жизни. Все организмы состоят из клеток, жизнь организма в целом обусловлена взаимодействием составляющих его клеток.
  2. Клетки всех организмов сходны по своему химическому составу, строению и функциям.
  3. Все новые клетки образуются при делении исходных клеток.

Клетка - элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами.

Все живые существа состоят из клеток - маленьких, окруженных мембраной полостей, заполненных концентрированным водным раствором химических веществ. Клетка - элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки. Два основных процесса эволюции - это:
1. случайные изменения генетической информации, передаваемой от организма к его потомкам;
2. отбор генетической информации, способствующей выживанию и размножению своих носителей.
Эволюционная теория является центральным принципом биологии, позволяющим нам осмыслить ошеломляющее разнообразие живого мира. Естественно, в эволюционном подходе есть свои опасности: большие пробелы в наших знаниях мы заполняем рассуждениями, детали которых могут быть ошибочными.
Но, что еще более важно, каждый современный организм содержит информацию о признаках живых организмов в прошлом. В частности, существующие ныне биологические молекулы позволяют судить об эволюционном пути, демонстрируя фундаментальное сходство между наиболее далекими живыми организмами и выявляя некоторые различия между ними.

Вначале под действием различных природных факторов (тепло, ультрафиолетовое излучение, электрические разряды) появились первые органические соединения, которые послужили материалом для построения живых клеток.
Ключевым моментом в истории развития жизни видимо стало появление первых молекул-репликаторов. Репликатор – это своеобразная молекула, которая является катализатором для синтеза своих собственных копий или матриц, что является примитивным аналогом размножения в животном мире. Из наиболее распространённых в настоящее время молекул, репликаторами являются ДНК и РНК. Например, молекула ДНК, помещённая в стакан с необходимыми компонентами, самопроизвольно начинает создавать свои собственные копии (хотя и значительно медленнее, чем в клетке под действием специальных ферментов).
Появление молекул-репликаторов запустило механизм химической (добиологической) эволюции. Первым субъектом эволюции были скорее всего примитивные, состоящие всего из нескольких нуклеотидов, молекулы РНК. Для этой стадии характерны (хотя и в очень примитивизированном виде) все основные черты биологической эволюции: размножение, мутации, смерть, борьба за выживание и естественный отбор.
Химической эволюции способствовал тот факт, что РНК является универсальной молекулой. Кроме того, что она является репликатором (т.е. носителем наследственной информации), она может выполнять функции ферментов (например, ферментов, ускоряющих репликацию, или ферментов, разлагающих конкурирующие молекулы). В какой-то момент эволюции возникли РНК-ферменты, катализирующие синтез молекул липидов (т.е. жиров). Молекулы липидов обладают одним замечательным свойством: они полярные и имеют линейную структуру, причём толщина одного из концов молекулы больше, чем у другого. Поэтому молекулы липидов во взвеси самопроизвольно собираются в оболочки, близкие по форме к сферическим. Так что РНК, синтезирующие липиды, получили возможность окружать себя липидной оболочкой, значительно улучшившую устойчивость РНК к внешним факторам.
Постепенное увеличение длины РНК приводило к появлению многофункциональных РНК, отдельные фрагменты которых выполняли различные функции.
Первые деления клеток происходили, видимо, под действием внешних факторов. Синтез липидов внутри клетки приводил к увеличению её размеров и к потере прочности, так что большая аморфная оболочка разделялась на части под действием механических воздействий. В дальнейшем возник фермент, регулирующий этот процесс.

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.
Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.
Живое содержимое клетки - протопласт - отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.
- Прокариотическая клетка.
Строение типичной клетки прокариот: капсула, клеточная стенка, плазмалемма, цитоплазма, рибосомы, плазмида, пили, жгутик, нуклеоид.
Прокариоты (от лат. pro - перед, до и греч. κάρῠον - ядро, орех) - организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов - линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток - митохондрии и пластиды.
- Эукариотическая клетка.
Эукариоты (эвкариоты) (от греч. ευ - хорошо, полностью и κάρῠον - ядро, орех) - организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты - прокариоты - митохондрии, а у водорослей и растений - также и пластиды.

Клеточная теория - одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.
- Общие сведения
Клеточная теория - основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Матиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).
Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.
- Основные положения клеточной теории:
1. Клетка - элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов. Вне клетки жизни нет.
2. Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.
3. Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.
4. Клетка - это единица развития живого организма.
- Дополнительные положения клеточной теории.
Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.
1. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу.
2. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы"). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов - к митохондриям, хлоропластам, генам и хромосомам.
3. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).
4. Клетки многоклеточных обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной работой различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

XVII век. 1665 год - английский физик Р. Гук в работе «Микрография» описывает строение пробки, на тонких срезах которой он нашёл правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками». Наличие подобной структуры было известно ему и в некоторых других частях растений. 1670-е годы - итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали разные органы растений «мешочки, или пузырьки» и показали широкое распространение у растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопист А. Левенгук. Он же первым открыл мир одноклеточных организмов - описал бактерии и инфузории.
Исследователи XVII века, показавшие распространённость «клеточного строения» растений, не оценили значение открытия клетки. Они представляли клетки в качестве пустот в непрерывной массе растительных тканей. Грю рассматривал стенки клеток как волокна, поэтому он ввёл термин «ткань», по аналогии с текстильной тканью. Исследования микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточном строении.
- XVIII век. В XVIII веке совершаются первые попытки сопоставления микроструктуры клеток растений и животных. К.Ф. Вольф в работе «Теории зарождения» (1759) пытается сравнить развитие микроскопического строения растений и животных. По Вольфу, зародыш, как у растений, так и у животных развивается из бесструктурного вещества, в котором движения создают каналы (сосуды) и пустоты (клетки). Фактические данные, приводившиеся Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистам XVII века. Однако его теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории.
- XIX век. В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз). Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.
Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высокоорганизованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки. В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.
Школа Пуркинье. В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу. Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»). В 1837 г. Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее, установить гомологию клеток растений и клеток животных Пуркинье не смог. Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).
Школа Мюллера и работа Шванна. Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором дал описание различных его видов и их клеточного строения. Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле. Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных. На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по филогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории - соответствие клеток растений и элементарных структур животных - была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты. В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:
- Развитие клеточной теории во второй половине XIX века. С 1840-х века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки - цитологию. Для дальнейшего развития клеточной теории существенное значение имело её распространение на простейших, которые были признаны свободно живущими клетками (Сибольд, 1848). В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток, что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.: Клетка - это комочек протоплазмы с содержащимся внутри ядром. В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.
Деление тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластомеров есть серия последовательных делений. Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма: Каждая клетка из клетки.
В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858). Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:
- XX век. Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал, в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки - с гражданами. Подобная теория противоречила принципу целостности организма.
В 1950-е советский биолог О. Б. Лепешинская, основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».
- Современная клеточная теория. Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.
Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

Похожие публикации